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ABSTRACT

A simple and quantitatively accurate representation of the current
distribution in a dipole antenna is derived. Numerical data are given
and are found to be in good agreement with the experiment when

hZ 0. 15\,




1. Introduction

The problem of the thin dipole antenna, whether center-driven
or asymmetrically driven, for antenna lengths that are short, long,
or infinitely long, has already been treated by many authors [1]-[13].
For example, King-Middleton's iteration procedure [4] gives accurate
input admittances; the so-called three-term theory [12] provides
simple expressions of current distributions on antennas less tha.n‘a.
wavelength long; the Wiener-Hopf procedure [10] predicts success=-
fully the behavit;r of longer dipole antennas; and if more accufate
theoretical data are desired, solving the problem numerically on a
high-speed computer is quite feasible now [11]-[13].

The purpose of this study is to give, for practical reasons, a
theory of the dipole antenna which can give a simple yet accurate
alegebraic expression for the current distribution everywhere on
the antenna even when antennas are ‘not short or are asymmetrically
driven. Such an expression is found provided the éenerator is not
less than 0. 15 wavelengths from either end and the antenna is not
too thick. Since the formula is simple and general, it is particu-
larly useful in discussing the properties of antennas with multiple
loadings or excitations or whenever a superposition of current dis-
tributions is needed, such as in the case of calculating the transient
response of a dipole to a short pulse applied at its driving-point.
These possibilities are being studied. Note that in the work of King
and Sandler [14], trigonometric functions are used to represent
currents on long antennas. However, their theory is specifically
for resonant dipoles that are not excessively long. There are no

such limitations in the present theory.




To pave the way for the simple theory, the current on an
infinit'ely long cylindrical antenna is obtained. An approximate
formula which involves a logarithmic term is found and is shown
to be accurate all along the antenna. Since the current reflected
at the end of a semi-infinite antenna behaves just like that on an
infinitely long antenna [8]’, the current on a finite dipole may be

.expre,s sed as the superposition of the outgoing and the reflected
waves, both of which can be represented in terms of a universal
function — the distribution function of the current on an infinitely
long antenna. The numerical_‘results for this simple theory are
compared with the experiment. It is shown.that the agreement
is remarkably good. The good agreement justifies a physical
description of the mechanism of a dipole antenna which is shown
to be analogous to a transmission line. Thus a simple and quanti- .
tatively accurate picture of a dipole antenna can be drawn even

when it is asymmetrically driven.

2. Current on an Infinitely Long Antenna

The vector potential A(z) on an infinitely long tubular antenna

driven by a delta-function source e-lwté(z) located at z = 0 is

u @
A(z) =4—;-f dz'Iw(z')K(z -2z') (1)
where
| 2m » -
K(z) = 217 f de eIkR/R , R= [z2+ (2a sin E)/Z)'/‘d]E
0
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The geometry of the antenna is shown in Fig. la. In (1), Im(z) is
the current distribution, a is the radius of the antenna, k is the
free-space wave-number, and Mo is the free-space permeability.

On the other hand, assuming that the dipole is perfectly con-
ducting, the axial component of the electric field vanishes at the
surface of the antenna:

z 2 2

. 2
E =10 (d-— + kz) Alz) = -5(z) , (2)
k dz

Direct application of Fourier transform theory to (1) and

(2) gives the current on an infinitely long antenna.

. iz
Im(z) = ZC—IIS- —TS-—Z-:-— dC (3)
o Je kT -cHRI)
(o]

where K(g) = ﬂiJon)l) and Jo and Hf)l) are Bessel functions with

arguments (k2 - Cz)é. The branch cuts are shown in Fig. 2a together
with the contour Co' co is the intrinsic impedance of the free-space.
If the contour Co and the branch cuts are deformed as shown in

Fig. 2b, the current distribution can be expressed in a form which

is particularly convenient for carrying out a numerical integration.

e ~kzn

@ 1 .
L(z) = niz f 7z, oz, dnt né f e;kmz z
°% (14m )(JO+YO) ° 74 (1-m )(JO+YO)

dn

© -z\/trzl-azkz/a

€
T Z /2 2.2
Co thl(tn)Yo(tn) tn ~a"k

n=1

(4)

In (4), Jo’ Jl and YO are Bessel functions with arguments ka\/1+n
in the first integral and ka\/1 -nz in the second integral, and t is

the n-th root of Jo(x).
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FIG.1 INFINITE AND SEMI-INFINITE ANTENNAS
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The results of a numerical integration of (4) for different
values of ka are shown in Fig. 3. Note that the eikz factor has been
suppressed to reveal the traveling-wave natﬁre of the current on
the antenna. The phase of the current, when the suppressed eikz-
factor is taken into account, is seen to be very close to a pure
traveling-wave even when kz is small. In other words, itis seen
that the effect of the generator is localized. This observation is
very useful to explain the final conclusion of this study that the
current on a finite dipole can be represented by outgoing and re-
flected waves even when the length of the dipole is not very long.

Since I_(z) plays a ve ry important role in the present theory,
it is necessary to find a simple representation for it. For this
purpose, the contour Co is deformed into C2 as shown in Fig. 2c.
Suppose that kz is not too small so that the contribution to the

integral comes from near { = k, I (z) can be approximated by the

following integral.

. (-3
kielkz e-Zkz'n 1
I (z)= 7 "'1 —3
° ZCW-logn+1z‘n
- | an (5)
ZCW-logn—l—Z—

where C_ = log(l—(-l;) -y, andy = 0. 57721566. Due to the exponen-
tial factor, the limit of the integration can be "cut off" to some

number D' which is approximately e ' (see Appendix).
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Dl

ikz 2kz
ie” dn 1
L(z)=~ n 3
° 9 ZCW-log’r]+12-1T
- : (6)

.
ZCW—logn-l-Z-

The integral of (6) can be carried out to get

jelkZ 2mi

I“(z) = log|1-

.3
o ZCW+log2kz+v+1E'n'

(7)

(for large kz; .see (9) for general case)
The input conductance of the infinitely long antenna is known

for small ka [10] to be approximately

' . 2
G '—'-—I—Irn log(1+1—él)+—1r—
o

1
® w 12 (Cw-logZ)Z

- 1 > (8)
(CW -log 2 +7i)

In order to obtain a formula for Iw(z) which is good even for

small kz, the term log 2kz in (7) is changed to log(kz + (kz)2 + D" )

The constant D" is determined by requiring that when kz = 0, the

real part of Iw(O) as given by (7) and ch as given by (8) are not to

differ by more than 3 in the limit that ka approaches zero.

(c,)
If this is done, D" is found to be equal to e_zv. Thus for all kz,

[ (z) can be expressed as

-8-




Im(z) = iz 1og 1- , 2mi —
© ZCW+1og(kz+\/(kz)2+ery)+'y+i§2—1r

(9)
The above equation can be thought of as an interpolating formula
between (7) and (8). To illustrate the ac¢uracy, numerical data
from (9) are plotted in Fig. 3 together with the exact values. It
can be seen that (9) remains in excellent agreement with the exact
value until kz is less than unity where a discrepancy in the ima-
ginary part begins to appéar; the real part is good to the driving-

point.

3. Reflected Current at the End of a Semi-~infinite Antenna

Fig. 1b shows the geometry of a semi-infinite antenna and
the coordinate system. A generator with voltage V is located at
z = £. To simplify the problem, eventually £ and V will be allowed
to go to infinity so that the amplitude of the incident current is
unity, thatis,

Iinc(z) - e—ikz . (10)

This problem was studied by Hallen [8].

If the conductor of the semi-infinite antenna existed for z < 0

(see Fig. 1b), the current would be Iw(z - f) which satisfies the

following equation

+co
2 .
(g—z ¥ kz) f I (z' - DK(z - 2)dz' = 21K ys(z - )
© ¢
dz o o
for all z (11)



Since the conductor is not there, let the scattered current be i(z), then

Ci(z) = ‘-Im(z - 1) for z"< 0 (12)
and
4o
dZ 21 o .
— + k f [Ic'a(‘z" -0 +i(z")]K(z - z')dz’
dz , ,
-0 ) . . ;
JAmKY o forz>0 . (13)
o

Comparing (13) with (] 17),‘ the following equation is obtained

d2 2 +°°
— + k f i(z')K(z -2')dz' = 0 for z> 0 (14)
dz )
In other words,
4
f i(z')Kl(z -z')dz!' = Celkz forz>0 (15)
where C is a constant. . Define
+oo ceikz 2> 0 :
f i(zVWVK(z - z')dz' = (16)
J G(z) z<0
T4 = f i(z)e 6% az (17)
O .
0
T_'_(g) = [ i(z)e-lgzdz (18)
K() = ﬂiJngl)[a(kz -C 2)'L‘] (19)
0
G, - f Glz)e™ €% gy (20)

-10-



Apply Fourier transformations on both sides of (16), to obtain

[T.(0) + T, R(C) =gy + T, Q) (21)

The kernel K(¢) is split into two fractions,

R() = I_(c)/f+<C) (22)
where
to} € -
log T, () = 2‘%[ dzvlzi—liéﬁ—) (23)
_w;E

so that E+(g) and —I:_(C) are analytic in the upper and lower half of

the ( -plane, respectively. Note that

L0~ ¢ B TET (23a)

1

and :+(€)=m

Substitute (22) into (21) and re-arrange terms. The following
equation is obtained
[T, +T_(ENT_(C) = | == + G,(¢){ T, ()
+ - - k -C + =7
At this point the s implification is introduced that V -« and £ + ® so

that (10) holds. Thus
TOT_ (O -¢%) + £ (k- 0T _(c)
= iC(k +¢)L, () + G, (k% -¢ AT, (¢) (24)

The left-hand side of (24) is analytic in the lower { -plane and the
right-hand side is analytic in the upper {-plane. They both equal
an entire function which is found to be a constant due to the behavior

at infinity. Thus

-11-



TOT_ (O -¢%) + 2 (k-OT_() = B,

Let { = -k, Bis found to be
B = -2ikL_(-k).

Therefore the Fourier transform of the reflected current is found:

1

- 2k — 1 1
I () =51 (-k) - = (25)
- i - (kZ_QZ)E_(g) i k+¢
For z > 0, after applying Fourier transform theory to (25),
kK — eigz dc
i(z) = T L_(-k)f > forz>0 (26)
, o

If Co is deformed as shown in Fig. 2c¢, and for kz not too small,
the contribution to the integral of (26) comes mainly from near
¢ = k so that

e1Cz

k% - ¢ H)R(C)

i(z) =% [L‘+<+k>]'2f

C2

dac (27)

Note that here relations (22) and (23a) have been used. Comparing

(27) with (3) gives

i(z) = =R Im(z) for large kz (28)
o) -2 . = 2
where R = | 5— [L, (k)] ©. The approximate value of [L+(k)] can be

shown to be

1

T
CW+1-2-

e 2 1
[T, )] =5 (29)

What (28) means is that, when away from the end, the reflected cur-
rent distribution behaves just like that of the current on an infinitely
long antenna driven by a fictitious generator of voltage =R located

at the point of reflection.

-12-




4. Current on a Center~driven Dipole Antenna

The foregoing analysis suggests that the current on a finite center«
driven antenna may be expressed as the superposition of the outgoing
wave, which is Im(z), and the reflected waves, which are proportional

tol (h+z)and I (h-2) respectively. That is,
Iz) = L (2) + CR[Im(h”z) + 1 (h-2)] | (30)

The simplest way to determine the constant CR is to evalu;te (30) at
z = 0, because the left-hand side of (30) is the admittance af a center-
driven antenna and is well-tabulated. The constant which is found
this way is

Y-Y,

CRl = ZI;TIT , ‘ (31)
where Y is the admittance obtained by any other accurate theory.
The second method to determine CR is independent of other theories
as follows: Assume the reflection coefficient R(f) at the end of an
antenna to be a slowly varying function of the parat"neter £ (the dis -
tance between the generator and the reflecting end) so that the
limiting values of R as £ goes to infinity (as obtained in the previous

section) can be used universally for all £, "Then froni (30), the inci-

dent current at z = -h is known to be qu(h) + CRIm(Zh);, the amplitude

of the reflected wave is CR" Thus
C
R
-R = (32)
Imlh) + CRIQ {2h}.

‘8ince -R is the amplitude of the ~reffected wave due to unit incident

wave. Solving (32) for C_, and denoting the value as C 29 it is

R R

found that

-13-



-RI (h) ‘
C = = ) v » (33)
R2 - T+RI_{2h)
Note that (31) can also be written in thé same form as (33) with the
"reflection coefficient" defined by
-(Y -¥,)

R(h) = > : (31a)
(Y = Y )I (2h) +2[I_(h)]

Neediess to say, R(h) is now a function of h. Fig. 4 shows numeri=-
cal values of R(h) when the King-Middleton admittance [15] and the
admittance cal¢ulated from the long antenna theory [10] are substituted
into (31a). Itis observed that if the admittance from the long antenna
theory is used, R(h) is virtually a constant, while if the admittance
from [15] is used, R(h) begins to deviate from the constant value
only when h is decreased further than 0. 15\, Thus it makes little
difference in the numerical value whethef CR is deferrﬁined by (31)
or (33). Hereafter, (33) is used. |

The following equé.tions )a‘re pfesented as a summary of the
foregoing discussion: |

I(h)

-]

[z) =1 (z) -—

1
R +I°°(2'h)

[Im(h+z)+I°°(h-z)] , (34a)

2[1(n))? |
Y=Y - T ‘ » (34b)

" +Im(2h)

where 1— =

R™¢ and Im(z) is given by (9). (34a) and (34b) are

i
o CW+1TZ'
similar to those obtained by Ghen and Keller [16] except for a factor
2 in (34b). However, here the formula for Iw(z) is good for all z

and therefore (34a) and (34b) are valid everywhere on the antenna.

-14-
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The input admittance and t‘he current distribution calculated
from (34a,b) are plotted in Figs. 5 and 6 together with experimental
data which are obtained from works of Mack{17] and Chen {18]. The
experimental data for current distribution obtained by Mack are
normalized at the driving-point while those obtained by Chen are
normalized at quarter-wavelength from the end of the a:ntenna. Note -
‘that in Chen's set-up the antenna was supported by a polyfoam slab.
The agreement between present theory and experiment is seen to be
remarkably good. Sorme of the discrepancy may be due to the experi-
mental difficulty of absolute measurements and in cases of long
antennas (Fig. 6(f), (g)), as pointed out by Chen, the presence of the
polyfoam is responsible for a small increase of the effective length

of the antenna.

5, Current on an Asymmetrically Driven Antenna

Let the coordinate be chosen so that the ends of the antenna are
atz = =h, and z = h2, and the driving-point is at z = 0. The cur-
 rent is represented by out-going and reflected waves just as in
Section 4, except that in the present case the ampiitudes of the

reflected currents are not equal.

I(z) = Im(z) +Cdlm(h1 +z)+ Cquo(hZ -z) (35)

It is assumed that the reflection coefficient is very insensitive to
the distance between the generator and the reflecting end. This
assumption has been justified in the sense discussed in the pre-
vious section. The amplitude of the incident wave at z = -h, is

() +C I (h; +h,) while that of the reflected wave is C, thus

-16-
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€4

-R = T(R)¥C_L(h +h) (36)
Similarly at z = hZ’
C\J.
RE ) FC L6, 7Ry (7
Solving (36) and (37):
c = -R I (h;)=-RI (h,)I (h, +h,) (38)

1- R (h +h2)]2

I (h,)-RI (h,)I (h, +h,)
1-R[L (b, +h,)]

where R is given by (34) and Iw(z) is given by (9).

In Fig. 5itis observed that the admittance of a symmetrically-
driven antenna calculated by present theory agrees with experiment
when h is greater than 0.15\. If this length is accepted as a limit
to the present theory, then in the asymmetrically-driven case,

(35) should be good when the generator is no less than 0. 15X\ a.way'

from either end of the antenna.

6. Conclusions

The foregoing discussion seems to support the following
picture of a dipole antenna. An outgoing traveling-wave of current
is generated along the dipole antenna when it is driven by a time-
harmonic source. It travels along the two arms of the dipole with
a speed almost equal to the speed of light and decays slowly in a

manner described by (9) as a result of radiation. It is reflected at

-22-



the ends of the dipole with the reflection coefficient given by (34).
After it is reflected, the current wave travels in the opposite
direction with the same speed and decays in the same manner as
before. The current distribution on the antenna is just the result
of the superposition of the outgoing current wave and all the re-
flected waves. This description of the current along a dipole
antenna is analogous to that for a lossless transmittion-line, for
which the traveling-wave of current does not decay. This quali-
tative picture is, of course, not new [5]; the main point of the pre-
sent paper is that quantitatively accurate results are obtained when
a good approximation of the current in an infinite antenna is used.

Numerical results are quite accurate whenh 2 0, 15\,

Appendix

In this appendix an approximation to the following integral is
demonstrated. This approximating method is used in deriving

{(27) from (26)

(-] -z ‘
1 =f e‘n £(n) dn (A1)
0

where f(n) is slowly varying and is zero at nn = 0 so that the integral

is well-defined. I is to be approximated by the following integral

D' /z
I~ f ‘i]—”f(m | (A2)
0

The task is to find D'.

-23-




This problem is approximately equivalent to determining the

constant D in the following equation

© 2 ’
z
f dn ,-nz =f d—'n-(l -e %) (A3)
il n ‘
D 0
z
(A3) is equivalent to
® D
fgne-ﬂzf d-—'r]‘(l-e-‘n) (A4)
n n
D 0
Since
[++]
-t 1 t
‘Yf AR ks (43)
0

(see p. 17, Higher Transcendental Functions, Vol. I, by Erdelyi,
McGraw-Hilbl Book Co.), substituting (A4) in (A5) yields
-y = logD
or D=e".
This is an exact solution. If f(n) is slowly varying, it should be

a good approximation to let D' = D = e Y.

-24-




[1]

(2]

[3]

(4]

[5]

(6]

[7]

(8]

[9]

[10]

(11]

[12]

[13]

References

L. V. King, "On the radiation field of a perfectly conducting
base insulated cylindrical antenna over a perfectly conducting
plane earth, and the calculation of radiation resistance and
reatance," Trans. Roy. Soc. (London) [A] 236, pp. 381-422
(1937).

E. Hallen, "Theoretical investigations into transmitting and
receiving antennae, " Nova Acta Regiae Soc. Sci. Upsaliensis
[4] 11, p. 1 (1938).

S. A. Schelkunoff, "Theory of antennas of arbitrary shape
and size," Proc, I. R. E. 29, pp. 493-521 (1941).

R. King and D. Middleton, " The cylindrical antenna: current
and impedance, " Quart. Appl. Math. 3, pp. 302-335 (1946).

E. Hallen, " Properties of a Long Antenna, " J. of Appl. Phys.
Vol. 19, pp. 1140-1141 (1948).

C. T. Tai, " A variational solution to the problem of cylindri-
cal antennas, " Technical Report No. 12 S. R.I. Project No. 188,
Stanford Research Institute (1950).

J. E. Storer, "Variational solution to the problem of the
symmetrical cylindrical antenna," Technical Report No. 101,
Cruft Lab., Harvard Univ. (1951).

E. Hallen, "Exact treatment of current wave reflection at
the end of a tube-shaped cylindrical antenna," L. R. E. Trans,
on Ant. Prop., AP-4, pp. 479-491 (1956).

R. H. Duncan and F. A. Hinchey, " Cylindrical antenna
theory, " J, Res. NBS 64D (Radio Prop.) No. 5, pp. 569-
584 (1960).

T. T. Wu, "Theory of the Dipole antenna and the two-wire
transmission line," J. of Math. Phys., Vol. 2, No. 4,
pp. 550-574 (1961),

K. K. Mei, "On the integral equations of thin-wire antennas,
IEEE Trans. on Antennas and Propagation, AP~13, No. 3,
pp. 374-378 (1965).

R. W. P. Kingand T. T. Wu, "Currents, Cha.fges, and Near
Fields of Cylindrical Antennas, " Radio Science J. Res.
NBS/USNC-URSI 69D, No. 3, pp. 428-446 (1965).

R. F. Harrington and J. R. Mautz, "Straight wires with

arbitrary excitation and loading," IEEE Trans. on Antenna$
and Propagation, AP-15, No. 4, pp. 502-515 (1967).

-25-



[14]

[15]

[16]

[17]

[18]

R. W. P. King and S. S. Sandler, "Driving-point impedance
and current for long resonant antennas, " IEEE Trans. on
Antennas and Propagation, AP-14, No. 5, pp. 639-641 (1966).

R. W. P. King, E. A. Aronsonand C. W. Harrison, Jr.,

‘"Determination of the Admittance and Effective Length of

Cylindrical Antennas," Radio Science, Vol. 1 (New Series),
No. 7, pp. 835-850 (1966).

Y. M. Chen and J. B. Keller, "Current on and Impedance of
a Cylindrical Antenna, " J. Res. NBS 66D (Radio Prop. ),
No. 1, pp. 15-21 (1962).

R. B. Mack, "A study of circular arrays, No. 2," Technical
Report No. 382, 'Cruft Lab., Harvard Univ. (1963).

C. L. Chen, Gordon McKay Lab., Technical Report No. 541,

‘Harvard Un1v (1967).

_26-




